CECSD Road Stewardship

"Windshield Survey"

Lynn Kissel December 14, 2022

For annual road survey this year, create a baseline, comprehensive pavement assessment

- Produce a comprehensive <u>pavement assessment</u> report of our roadways
 - Road Committee member(s) with <u>consultant</u> does "windshield survey" of all our roads (à la TMS Handbook); addresses uniformity of our annual survey; thinking 1- or 2-day active survey; have a draft assessment <u>form</u> available for review
 - <u>Characterize each roadway segment</u>: composition HMA/chip; thickness/traffic/subgrade (Pavement Prediction Curves, LACo)
 - <u>Identify existing distresses</u> (type & size), severity (L/M/H) on each segment (TMS Ch 3)
 - Road Committee writes the final report; what is the consultant's deliverable?
 - Trained Road Committee capable of future assessment updates
- <u>Propose treatments</u> (individual projects) for each road segment that address distresses identified in the assessment
 - Part 2, after the windshield survey; <u>unordered list of projects</u> (like pile of Legos[™])
- Role of all directors now is to
 - Individually critique the assessment, especially for their assigned roads
 - Collectively select and schedule treatments list of projects (build multiyear plan, like stacking Legos[™])
 - Select future maintenance schedule(s) for each segment after distresses fixed (eg, fog @ 3-5 yr intervals, or chip @ 7-10 yr intervals *incl. cost of restriping? Fog+25%, <u>Chip+6%</u>)*

Rx for CECSD? <u>Patch, chip, fog or slurry</u>; maintain w/recurring {?} seals? \$/yr? Is a future of fixing isolated distresses and repeated {?} seals a reasonable goal?

DRAFT Survey Form

Date:		Length:	935	ft
Segment ID:	OldMill	Width:	13	ft
Inspector:		Area:	12,155	ft^2
Comment:		Thickness:	1	(1= thin, 2= medium, 3= thick)
		Traffic:	1	(1= low, 2= medium, 3= high)
		Subgrade:	1	(1= weak, 2= strong)

Distress Type Unit Severity Estimate Distress Size									
		(L/M/H)	(use easies	t one, not I	both)				
			% of	# of	Commont				
			L or A	Units	comment				
Bleeding	SF								
Bumps & Sags	LF								
Cracking: Alligator	SF								
Cracking: Block	SF								
Cracking: Edge	LF								
Cracking: Joint	LF								
Reflection									
Cracking: Longitudinal	LF								
Cracking: Transverse/Thermal	LF								

DRAFT Survey Form

Distress Type	Unit	Severity	Estimate Distress Size							
		(L/M/H)	(use easies	t one, not b	poth)					
			% of	# of						
			L or A	Units	Comment					
Quidation										
Oxidation	SF	NONE								
Patching	SF									
Pocking	NONE	NONE								
Polished Aggregate	SE	NONE								
	51	INCINE								
Potholos		1014								
Potholes	#	LOW								
	#	MED								
	#	HIGH								
Rutting	SE									
	JF									
	1972 - 61									
Shiving & Corrugation	SF									
Spalling	NONE	NONE								
Weathering/Raveling	SE									

Б
ð
Э
a
E
ă
a
9
pt
e
-
×
÷
Ð
Ĥ
2
ö
B
Da
5
0
20
22
1
F
÷
Q

Totals	3	2	1		Class
87,178	18,338	32,242	36,598	(ft)	Ler
16.51	3.47	6.11	6.93	(mi)	igth
1,696,663	306,191	606,852	783,620	(SF)	Area

		Valley Vista Rd	Trails End Rd	Strolling Hills Rd	Spring Meadow Rd	Sleepy Hollow Rd	Ridge Pass Dr	Rancho Rd	Old Mill Rd	Native Ln	McNeil Rd	Longview Rd	Longhorn Ridge Rd	Lariat Lp	Lariat Dr	Highcrest Dr	Gold Spur Rd	Flying C Rd (B)	Flying C Rd (A)	Flying C Cul de Sac	Flying C Ct	Fallen Leaf Rd	Dove Meadow Ct	Deer Knoll Rd	Deer Creek Rd	Cameron Rd (B)	Cameron Rd (A)	Brookside Rd	Roadway	
	Totals	3	3	1	3	3	2	3	3	3	3	3	3	2	2	2	3	1	2/1	3	3	2	3	3	3	1	1	3	Class	
16.5	87,178	1,265	808	11,760	1,307	2,120	3,138	601	556	1,157	2,790	715	576	6,728	660'8	5,328	326	7,398	5,948	841	997	3,800	649	661	1,466	6,672	9,969	1,124	Length (ft)	
miles	feet	16	16	22	18	18	18	16	13	16	18	18	10	18	20	18	16	22	20	16	16	18	16	16	18	22	20	18	Width (ft)	CAP JEL
	1,696,663	20,240	12,928	258,720	23,526	38,160	56,484	9,616	12,155	18,512	50,220	12,870	5,760	121,104	161,980	95,904	5,216	162,756	118,960	13,456	15,952	68,400	10,384	10,576	26,388	146,784	199,380	20,232	Area (SF)	

CECSD Roadway Database

Our understanding of responsible road stewardship has evolved as we've digested these resources

- World Bank, *Transportation Note No. TRN-4* (2005)
 - "Why road maintenance is important and how to get it done"
 - Importance of MAINTENANCE (what is that?), INFLATION (PPI vs CPI)
- LA County Public Works, "Road Stewardship" (web)
 - "Right Road, Right Treatment, Right Time, Right Way;" <u>How to methodology</u>; developed with industry; 7400 lane-miles of road (adapt to our ~30 lane miles)
 - Important cost savings of PAVEMENT PRESERVATION, what MAINTENANCE really means, 10x in costs based on approach
 - Gave future cost estimates for Spring Meadow (C-3 surrogate*); extend to all roads
- Iowa State University (Iowa DOT), <u>Thin Maintenance</u> <u>Surfaces Handbook</u> (2007)
 - Easy read; pros/cons; when/which TMS to use; maintenance vs stop gap
 - "<u>Windshield survey</u>," simple materials and procedure perfect for us?
 - For me, answered question "Are the cracks in our slurry seal to be expected/OK?"

CECSD needs solutions that are effective within both our <u>money</u> and <u>people</u> resources

• C-3 \$/SF/yr in 2022: fog/slurry/chip ~0.04-0.20; HMA overlay ~0.30-1.00; R&R ~0.50-1.50

"Road Stewardship" is designed to improve roads, reduce costs, forecast future costs

Delayed treatment buys diminishing years of service at accelerating cost of repair

Directors Report

Comparing Strategies

	Cost per Tre	atment	Repeated (Yrs)	Cost per Yea	ar			
Treatment	Low High		Short Long		Low/Long	High/Short	Mean	Rel. Diff.	Comment
Fog Seal (fine)	4,705	7,058	3.0	5.0	941	2,353	1,647	0%	Cost effective; in budget?
Slurry Seal (med)	11,763	20,326	5.0	7.0	1,680	4,065	2,873	74%	Cost effective; in budget?
Chip Seal (course)	13,070	22,585	7.0	10.0	1,307	3,226	2,267	38%	Cost effective; in budget?
HMA Overlay	117,630	235,260	10.5	15.8	7,469	22,406	14,937	807%	Nicest roads; breaks budget!?
Remove & Replace	235,260	470,520	13.0	19.5	12,065	36,194	24,129	1365%	Nicest roads; breaks budget!?

Date	PCI	Comment
9/8/2022	96.00	LK: Patches & chip seal in 2022; no cracks (+100), surface rough (-4); FOG seal in 3-5 yrs (2025-27)

"Pavement Preservation" techniques have the lowest costs for sustained road ownership

Some highlights from the TMS Handbook

- Chapter 4, Treatments at a glance
 - One page summary! A handy reference! Review the tables
- Chapter 6, Treatment options
 - Seal coat (aka "chip seal"), p23
 - advantages "seals cracks; inexpensive; flexible; moves with pavement without cracking"
 - disadvantages "unbound aggregate, flyrock; initially rough/noisy; dust can be generated"
 - Slurry seal, p27
 - disadvantages "Because of its brittle nature, the slurry seal will reflect all cracks quickly"
 - (Guessing that prior crack seal would not have prevented cracks; seal is flexible, pavement will still move; tile floors)
- What is our traffic volume?
 - Important parameter for selecting appropriate treatments
 - Measured in AADT (Annual Average Daily Traffic), AADT <2000 is considered "light" traffic
 - An upper-bound estimate? Expect highest traffic at gates
 - 300 parcels * 5 trips/day/parcel * 2 round trip ÷ 2 ways out
 = 1500 AADT ⇒ ALL our traffic is "light"

Incorporate elements of these strategies to improve our roads and manage our costs

Thin Maintenance Surfaces Handbook

Pal P ints 3 0) 9 C Ð

able for the various distresses and traffic volumes These tables recommend which surfaces are suitpresented about treatment selection in Chapter (7) However, these tables do not break down the vari-The following tables summarize the information

tion process along on a windshield survey to help start the seleclocated in Chapter (X). These tables can be taken breakdown, refer to the tables for individual surfaces ous distresses by level of severity. For a more detailed

	Rut depth	Less than ¼ in	pth % to ½ inch	Rut de ½ to 1 inch	Greater than 1 i
Micro-surfacing*		h One course	Scratch course and final surface [≢]	Rut box and final surface®	h Multiple placements with
Slurry seal**		One course	One course	Micro-surfacing scratch course and final surface	***
Thin HMA overlay		One course	One course	Scratch course plus surface course	Scratch course plus
NovaChip®		One course	One course	Mill surface or use another material for scratch course	Mill surface or use another

** Current practice in lowa As recommended by International Slurry Seal Association

*** Sometimes successful (anecdotal evidence)

Anecdotal evidences suggests that one course may be sufficient for functionallity, but apperance may be compromised Scratch course and surface course have been successfully used in lowa according to author observations

				C	R	B	в				Ŧ	
frinding	Alligator cracking	Extensive cracks	Few tight cracks	acking	iveling	ıtting	leeding	AADT>5,000	2,000>AADT>5,000	AADT<2,000	affic volume:	
May improve ⁽³⁾	8	8	~		~	8	8	~	~	~		Fog seal
May improve	\leftrightarrow	×	く		~	8	~	$\leftarrow \rightarrow^{(4)}$	$\leftrightarrow \rightarrow^{(1)}$	~		Seal coat
May improve	8	8	く		*	~	~	$\leftarrow \rightarrow^{(1)}$	\leftrightarrow ⁽¹⁾	~		Slurry seal
May improve ⁽²⁾	8	8	く		~	~	~	×	1	~		Micro-surfacing
May improve	8	~	~		~	~	~	1	×	~		Thin HMA overlay

All CECSD AADT <2000

Recommended 8 Not recommended \uparrow \checkmark

Marginal

Least susceptible

Snowplow damage

¹There IS a greater likelihood of sucess when used in lower speed traffic.

² Micro-surfacing reportedly retains high friction for a longer period of time.

 3 Fog seal will reduce friction for the first few months until traffic wears binder of the tops of aggregate

⁴Not used in lowa, but other states have seen success

19